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Abstract

Researchers and practitioners who consider economic regional (sub-national)
policy questions often face the problem of regional input-output (I–O) table
unavailability. The literature offers a number of approaches to approximate such
tables. In this paper, a survey of the leading state-of-the-art methods in the field
is presented, and their pros and cons are discussed. I take into account both
single-region approaches, such as the location quotient (LQ) family, as well as
interregional input–output (IRIO) methods, especially their class referred to as
gravity-RAS. I pay particular attention to recent developments in using spatial
econometric methods (Spatial IRIO). The discussion is illustrated with simple
numerical examples and selected empirical results.
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1 Regional and interregional tables

National statistical offices provide economists with input-output (I–O) tables for
national economies, usually at 5-year intervals. However, tables for sub-national
regions, as well as flows of intermediate goods between these regions, remain beyond
the scope of the standard data delivery of public statistics. At the same time, such
sub-national tables remain a useful tool in regional economic studies or regional
development policy design. This is why economists have been attempting to propose
and apply increasingly accurate and sophisticated estimation methods. The literature
proposes a number of various approaches, characterized with different pros and cons,
with earliest proposition dating back to Isard (1951), Chenery (1953), Moses (1955)
and Leontief and Strout (1963), i.e. times when the I–O analysis itself was relatively
young.
This text, addressed predominantly to applied researchers, aims to present a
spectrum of most impactful approaches to building input-output tables for a grid
of (subnational) regions. The emphasis is put on rationale behind the presented
concepts (why it was proposed and might be useful), their critical discussion (why
it sometimes fails to replicate the scarce real-world evidence), as well as enhancing
replicability and building intuition (link to code and numerical examples). I also
discuss in more detail the recent attempts to apply spatial econometric methods in
the field.
An important distinction needs to be made between (intra)regional and interregional
(or multiregional) I–O tables, henceforth referred to as RIO and IRIO, respectively.
The structure of RIO resembles the structure of national I–O datasets, but they
refer to a territorial subset of the national economy (see Table 1a and left/middle
pane of Figure 1). In some published RIO tables, an additional row for interregional
“imports” appears, so as to distinguish it from international imports in the strict sense
(cf. Koutaniemi and Louhela, 2006). IRIO, in turn, covers multiple geographies,
describing intermediate flows beween each sector-region pair. As a result, the
intermediate demand matrix is sized S×S in national or regional I–O tables, whereas
the respective size in IRIO is (S ·R)× (S ·R) (S – number of sectors, R – number of
regions; Table 1b).
One can think of an IRIO table, covering a complete set of subnational regions of a
country described by a national table (see right pane of Figure 1), as an interpolation
in which every scalar entry is replaced with an R×R matrix (see Table 1). Conversely,
if IRIO was arranged with regions as the “slow” and sectors as the “fast” dimension
(the “Chenery-Moses notation”), one might regard the intermediate demand matrices
from RIO tables as diagonal blocks thereof. From the application perspective, it must
be recognized that single-region tables do not account for cross-regional feedback
effects (Folmer and Nijkamp, 1985; Wiedmann et al., 2011; Miller and Blair, 2009,
ch. 3, pp. 76-101) and this is especially the case when the I–O simulation is to be
conducted for a small region. According to Loveridge (2004), “theory would say that
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the [local] multiplier should grow as the size of the region over which the impact is
estimated grows”.

Table 1: IO, RIO and IRIO table structure: intermediate demand

(a) national/regional I–O table

Sec A Sec B

Sec

A
Reg

1

zA,A . . .

Sec

B
Reg

1

...
. . .

(b) IRIO table
Sec A Sec B

Reg 1 Reg 2 Reg 1 Reg 2

Sec A
Reg 1 z1,1

A,A z1,2
A,A . . .

Reg 2 z2,1
A,A z2,2

A,A

Sec B
Reg 1

...
. . .

Reg 2

This survey starts with taking a look at scarce available data sources, including the
Commodity Flow Survey study from the United States (on which multiple further
studies are based), RIO tables, international I–O databases (multiple countries or
multicountry blocks) and interregional I–O tables (subnational regions) in Section
2. In Section 3, leading approaches to RIO construction – mostly belonging to the
Location Quotient family – are presented and applied in a simple numerical example.
Section 4 proceeds to methods of IRIO construction and Section 5 focuses in particular
on recent contributions that build on using spatial econometric methods. Section 7
concludes.

2 Existing data sources

2.1 Commodity Flow Survey
Instances of official RIO or IRIO publication at subnational level are scarce. For
such a publication to be feasible, a survey-based assessment of trade geography would
have to be made for all sectors in every region of interest. Such an effort would be
overly expensive for most practical applications (Sargento et al., 2012). However,
the U.S. government runs a related survey, named Commodity Flow Survey (CFS,
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Figure 1: Geographic scope of I–O, RIO and IRIO

(national) I–O regional I–O IRIO

https://www.census.gov/programs-surveys/cfs.html), that provides researchers with
high-quality direct (though incomplete) evidence that facilitates building tables for
subnational regions of the U.S. economy. The survey is designed as shipper-side
survey: enterprises provide information related to selling and sending physical goods
and selected services, related to the value, weight, origin and destination (both within-
country and exports, final and raw goods; see Figure 2 for an example). The way in
which CFS-like data, along with other data sources, is used in building a balanced
regional and interregional table can be traced in detail in Jackson et al. (2006) (see
also an extensive discussion in Miller and Blair, 2009, ch. 8).

2.2 International tables
Among available IRIO-type tables, international versions are more prevalent. Table
2 summarizes their availability and sources. The pioneering but discontinued World
Input-Output Database project issued its most recent edition available as of 2014.
More recent data has been published by both Eurostat (Figaro project) and OECD
(Inter-Country Input-Output database, OECD, 2023). The limitation of the former
is focus on European countries, whereas the latter does not provide an explicit
breakdown of value added into labour and capital income, which limits the scope of
studying labour-related questions or excludes the possibility of simulating induced
effects in the Leontief model without additional external assumptions. Another
source, available as part of the Global Trade Analysis Project database that feeds
data into Computable General Equilibrium models, is GTAP MRIO (Carrico et al.,
2020).
The compilation of such tables is by no means free from methodological challenges.
Their long list includes i.a. reframing of data generated under various statistical
accounting standards (e.g. different sectorial breakdowns), resolving discrepancies of
various types (e.g. reporter and trade partner side), the need for ex-post balancing
or accounting for international trade margins. The recent literature pays attention
to the problem of currency conversion when international tables are compiled for
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Table 2: International IRIO tables

Source Institution Regions Sectors Additional
information

Last
edition
(verified
09.2024)

World Input-
Output
Database

WIOD 43 56 extensive set of
auxiliary indicators
(including
employment)

2016 (data
as of 2014)

FIGARO Eurostat 46 64 focused on EU
economy

2024 (data
as of 2022)

OECD ICIO OECD 77 45 no breakdown of
value added into
capital and labour
remuneration

2023 (data
as of 2020)

different currency areas (Timmer et al., 2016). This is why purchasing power parity
based conversion appears to be superior to nominal exchange rate conversion. Further
discussion on this can be found in Reich (2018) and Lach (2020).

2.3 Subnational tables
The instances of survey-based subnational IRIO can be regarded as rare, one-off or
low-frequency publications. Table 3 provides a summary, including hyperlinks to
sources, information on the year to which the most recent version relates, as well as
selected texts that build on a given source. The summary is possibly not exhaustive,
but it contains all the sources widely considered in the literature, mostly mentioned
in a similar summary provided by Davidson et al. (2022, p. 44).
Two more data sources deserve special attention. Koutaniemi and Louhela (2006)
provide (partly) survey-based RIO tables for 19 Finnish NUTS-3 regions. A unique
table covering multiple sub-national regions of multiple countries has been provided
by the European Commission Joint Research Centre (2020) in the EUREGIO project,
with 256 EU NUTS-2 regions, 17 other regions and 15 sectors.

3 Regional tables: LQ family and cross-hauling
For the purpose of numerical illustration of building RIO, let us consider a simple
3-sector, 2-region economy. A typical dataset available in practice in such a case, e.g.
for the EU countries acting under the Eurostat standards, consists of the following:
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Table 3: Subnational IRIO tables: published data examples

Country year regions sectors Applied in...
South Korea 2015 16 33 Flegg and Tohmo (2019), Jahn et al.

(2020)
Japan 2005 9 53 Gabela (2020), Sonis et al. (2000),

Polenske (1970)
China 2017 31 32 Zhang et al. (2015)
Belgium 2015 2 97 L. Avonds (2021)
Canada 2008 14 51 United Nations (2018)

Source: Davidson et al. (2022, p. 44); author.

i) The national I–O table (e.g. Table 4a), including the intermediate demand
matrix Z, as well as vectors of global demand x, final demand f and value
added v. The number of sectors typically varies from 50 to 80 (e.g. 77 in
Statistics Poland I–O tables). In what follows, let i index supply-side sectors
(commodities), and j demand side sectors (activities).

ii) The 2-dimensional, regional and sectorial distribution of economic activity
(e.g. Qrj in Table 4b, with r indexing regions). Depending on the level of
spatial and sectorial aggregation, this can be value added or employment. Note
the trade-off between the level of detail in both dimensions. For example,
by European standards, one can choose between data on value added for 20
NACE sections or NUTS-2 granularity or 7 groups of sections for NUTS-3
granularity. With NUTS-4 granularity, it is necessary to use employment data
in a breakdown into groups of sections. The drawback of the latter is only
partial coverage of workforce (without small enterprises) and not accounting for
cross-regional differences in regional productivity when translating employment
proportions into activity proportions. This is particularly acute when sectors
are heterogeneous, and NUTS-4 units are relatively specialized within a given
sector (e.g. some of them are dominated by, say, a steel mill, whereas
the employment is translated into activity proportions only with national
manufacturing productivity, or at best higher level regional manufacturing
productivity at NUTS-2). The data in Table 4b coincides with national
totals in terms of global output, which is normally not available in regional
breakdown, but can be derived from data on value added under the assumption
of homogeneous profitabilities in a given sector across regions, which simplifies
exposition here.

Table 4a implies a national cost structure matrix AN =

 0.4 0.1 0.063
0.05 0.3 0.125
0.05 0.1 0.313

.
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Table 4: Example of 3-sector 2-region economy

(a) national I–O table

Sector 1 Sector 2 Sector 3

Intermediate demand (Z)
Sector 1 40 5 5
Sector 2 5 15 10
Sector 3 5 5 25

Global output (xT =
[
QN1 QN2 QN3

]
) 100 50 80

(b) regional activity data

Qrj Sector 1 Sector 2 Sector 3 TOTAL
Region 1 70 20 10 100 [43%]
Region 2 30 30 70 130 [57%]
TOTAL 100 [43%] 50 [22%] 80 [35%] QN = 230

The general principle of the family of LQ approaches is to use these coefficients as
starting values and modify them with region-specific scaling factors qri,j to obtain the
regional cost structure Ar:

ari,j = aNi,j · qri,j . (1)
The (Simple) Location Quotient approach (see Isard, 1951; Isard and Kuenne, 1953;
Leontief and Strout, 1963; Flegg et al., 1995; Miller and Blair, 2009) defines the
scaling factors as follows:

qri,j = min (SLQri ; 1) , (2)

SLQri = Qri /Q
r

QNi /Q
N
. (3)

For a given sector-region pair, SLQ compares the regional and the national share of a
given sector in the whole economy (3). If the former is higher, the region is considered
as specialized, SLQ exceeds unity and no scaling is applied (2). In the opposite case,
the regional cost structure coefficient is downscaled, so as to reflect the fact that a
need for cross-regional imports arises and the degree of local sourcing is lower than
nationwide. In principle, local sourcing is always treated as a first choice by the SLQ
approach, and the method is widely considered to produce upward-biased Ar entries.
The literature regards SLQ as a fine-tuning device of the regional cost structures to
reflect cross-regional exchange rather than region-specific adjustment of technologies.
Using this interpretation, one can compute implicit cross-regional imports of indirect
goods from sector i as

∑
j

(
aNi.j − ari,j

)
· xrj by region r. Note that qri,j only depends

on i, but not j: common scaling factors are applied to individual rows of the cost
structure matrix (see Table 5b). Due to this row-wise scaling scheme, each of the two
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Table 5: Simple example, cont’d: (Simple) Location Quotients

(a) Calculation of SLQ

Region i = 1 i = 2 i = 3
SLQri

r = 1 1,610 0,920 0,288
r = 2 0,531 1,062 1,548
Interregional imports:

∑
j

(
aNi.j − ari,j

)
· xrj

r = 1 0,000 0,860 6,145
r = 2 9,091 0,000 0,000

(b) Regional cost structure matrices

Region 1 (A1)
0.400 0.100 0.063
0.046 0.276 0.115
0.014 0.029 0.090

Region 2 (A2)
0.212 0.053 0.033
0.050 0.300 0.125
0.050 0.100 0.313

Note: Figures in bold are corrected as compared to the national coefficients AN =

[ 0.4 0.1 0.063
0.05 0.3 0.125
0.05 0.1 0.313

]
.

regions can either be an importer or an exporter of a given good to other regions,
but it cannot be both at once (see Table 5a). Simultaneous exports and imports of
the same commodity is highly prevalent in real-world data and referred to as cross-
hauling, and it is assumed away under SLQ. In the considered example, region 1 is
highly specialized in producing commodity 1, and imports other commodities from
region 2, especially commodity 3 as a regional specialization of region 2.
One proposed extension of SLQ is to exclude from the computation of Qr and QN

in (3) the sectors that do not purchase commodity i. This approach is known as
Purchases-Only Location Quotient (PLQ), and the modified location quotients are
interpreted in terms of comparing regional and national ability to deliver supply of i
for the sectors that acutally demand this commodity.
A more widespread method, named Cross-Industry Location Quotients (CILQ),
modifies the off-diagonal elements of the correction factor matrix

[
qri,j
]
as follows:

qri,j =
{

min (SLQri ; 1) i = j

min
(
CILQri,j ; 1

)
i 6= j

, (4)

CILQrs,v = SLQri
SLQrj

. (5)

293 A. Torój
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Table 6: Simple example, cont’d: Cross Industry Location Quotients

(a) Calculation of CILQ

Region Sectors j = 1 j = 2 j = 3 Interregional imports:
CILQri,j

∑
j

(
aNi.j − ari,j

)
· xrj

r = 1
i = 1 1.750 5.600 0.000
i = 2 0.571 3.200 1.980
i = 3 0.179 0.313 6.477

r = 2
i = 1 0.500 0.343 10.006
i = 2 2.000 0.686 2.750
i = 3 2.917 1.458 0.000

Note: two positive figures in bold indicate cross-hauling in commodity 2.

(b) Regional cost structure matrices

Region 1 (A1)
0.400 0.100 0.063
0.029 0.276 0.125
0.009 0.031 0.090

Region 2 (A2)
0.212 0.050 0.021
0.050 0.300 0.086
0.050 0.100 0.313

Note: figures in bold are corrected as compared to the national coefficients AN =

[ 0.4 0.1 0.063
0.05 0.3 0.125
0.05 0.1 0.313

]
.

In region 2, element (2,3) is corrected downwards, unlike the rest of row 2 (italics).

Again, the scaling is only possible downwards, but individual entries in each row of AN

now face different scaling factors, depending on both i and j. The scaling is nuanced
depending on the relative size of the recipient sector in the region r. The less a region
is specialized in producing a given commodity against a nationwide benchmark, the
more it is importing, and this differentiation is overproportional. As a result, cross-
hauling can emerge. In the numerical example (see Table 6a), commodity 2 is traded
between the two regions in both directions, since the input of its local production
into activity 3 has dropped below the countrywide average to 0.086. This is because
region 2 is less specialized in producing commodity 2 than the country average, but
more specialized in sector 3 that necessitates commodity 2 as an input. Hence, the
case for imports arises.
Despite CILQ does not preclude cross-hauling, its size is limited (Flegg and Tohmo,
2013a) and, consequently, local cost structures and multiplier are still likely to be
overestimated (Robinson and Miller, 1988, 1991).
As noted by Round (1978), both SLQ and CILQ miss one piece of information
each: SLQ does not take into account the size of regional buying sector, whereas the
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Table 7: Simple example, cont’d: Round’s Location Quotients

(a) Calculation of RLQ

Region Sectors j = 1 j = 2 j = 3 Interregional imports:
RLQri,j

∑
j

(
aNi.j − ari,j

)
· xrj

r = 1
i = 1 1.711 4.416 0.000
i = 2 0.665 2.524 1.653
i = 3 0.208 0.305 6.389

r = 2
i = 1 0.509 0.393 9.759
i = 2 1.728 0.787 1.867
i = 3 2.520 1.483 0.000

(b) Regional cost structure matrices

Region 1 (A1)
0.400 0.100 0.063
0.033 0.276 0.125
0.010 0.031 0.090

Region 2 (A2)
0.212 0.051 0.025
0.050 0.300 0.098
0.050 0.100 0.313

Note: figures in bold are corrected as compared to the national coefficients AN =

[ 0.4 0.1 0.063
0.05 0.3 0.125
0.05 0.1 0.313

]
.

computation of CILQ cancels out the relative size of the region’s economy, Qr/QN .
As a reconciliation, he proposed Round’s Location Quotients, based on the following
formula to be applied in eq. (4) instead of CILQri,j :

RLQri,j = SLQri
log2

(
1 + SLQrj

) . (6)

The application of RLQ limits the role of extreme SLQ values on the purchasing
sector side, taking into account the region size. In the numerical example under
consideration, it leads to a slight decrease in interregional trade as compared to using
CILQ, although the general picture remains roughly unchanged (see Table 7).
Flegg’s Location Quotients (FLQ), probably the most widespread technique in single-
region applications (Flegg et al., 1995; Bonfiglio, 2009; Flegg and Tohmo, 2014; Flegg
et al., 2021), extends CILQ as follows:

FLQri,j =
{
SLQri · λr i = j

CILQri,j · λr i 6= j
, (7)

λr =
[
log2

(
1 +Qr/QN

)]δ
, (8)

295 A. Torój
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Table 8: FLQ correction (λ) depending on convexity (δ) and region size (Qr/QN )

λr convexity (δ)
region 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1share

0 1.00 0.65 0.43 0.28 0.18 0.12 0.08 0.05 0.03 0.02 0.01
0.01 1.00 0.77 0.59 0.45 0.35 0.27 0.20 0.16 0.12 0.09 0.07
0.05 1.00 0.82 0.67 0.55 0.45 0.37 0.30 0.25 0.20 0.17 0.14
0.1 1.00 0.87 0.77 0.67 0.59 0.51 0.45 0.39 0.34 0.30 0.26
0.2 1.00 0.91 0.82 0.75 0.68 0.62 0.56 0.51 0.46 0.42 0.38
0.3 1.00 0.93 0.87 0.81 0.75 0.70 0.65 0.60 0.56 0.52 0.49
0.5 1.00 0.95 0.90 0.85 0.81 0.76 0.72 0.69 0.65 0.62 0.58

using then FLQri,j instead of SLQri,j in eq. (2). The convexity parameter δ (0 ≤
δ < 1) determines the degree of interregional trade and cross-hauling. For δ = 0,
the formulae (7)-(8) collapse to (5). As δ grows, the interregional trade intensifies,
especially for small regions (see Table 8).
Although FLQ ensures a more realistic treatment of the openness of the regional
economy and more considerable role of cross-hauling, the results are conditional upon
the choice of δ. Flegg and Tohmo (2013b), Flegg et al. (2021) and Azorin et al.
(2022), among others, discuss potential values and analyse the degree of empirical
fit based on available resouces. Flegg and Tohmo (2019, eq. (22)) propose a helpful
formula that links an optimum level of δ (derived as minimizing mean percentage
error for Finnish regional tables) to other factors desribing a regional economy: (i)
region’s size (% of national output), (ii) proportion of region’s gross output imported
from other regions, averaged over sectors, (iii) region’s average use of intermediate
inputs. A more nuanced proposal has been put forward by Kowalewski (2015) who
suggests using sector-specific values of δs. Zhao and Choi (2015) analyse this proposal
in detail and conclude that this version of FLQ formula is debatable and still needs
major improvement.
In the numerical example, using FLQ with δ = 0.75 generally intensifies the cross-
regional trade as compared to CILQ or SLQ (cf. Tables 9b and 6b). It also extends
the degree of cross-hauling: the bi-directional trade in commodity 2 intensifies, and
affects now commodity 1 as well. This is specifically because the correction factor λ1

forces FLQ1
1,1 below unity and hence enforces intermediate imports.

All abovementioned LQ techniques presume building Ar either by reducing AN

elements into or by leaving them unchanged. This precludes the third possibility,
that of increasing national cost structure coefficients, which could be justified on
the grounds of economic geography. As argued by McCann and Dewhurst (1998),
regional specializations can lead to creation of regional clusters; these, in turn, increase
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Table 9: Simple example, cont’d: Flegg’s Location Quotients

(a) Calculation of FLQ with δ = 0.75

Region Sectors j = 1 j = 2 j = 3 Interregional imports:
FLQri,j

∑
j

(
aNi.j − ari,j

)
· xrj

r = 1
i = 1 0.987 1.073 3.433 0.362
i = 2 0.350 0.564 1.962 4.890
i = 3 0.109 0.192 0.176 7.308

r = 2
i = 1 0.383 0.360 0.247 12.621
i = 2 1.442 0.765 0.494 6.538
i = 3 2.103 1.051 1.116 0.000

Note: figures in bold emphasize commodities for which cross-hauling arises.

(b) Regional cost structure matrices

Region 1 (A1)
0.395 0.100 0.063
0.018 0.169 0.125
0.005 0.019 0.055

Region 2 (A2)
0.153 0.036 0.015
0.050 0.230 0.062
0.050 0.100 0.313

Note: figures in bold are corrected as compared to the national coefficients AN =

[ 0.4 0.1 0.063
0.05 0.3 0.125
0.05 0.1 0.313

]
.
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Table 10: Simple example, cont’d: Augmented Flegg’s Location Quotients

(a) Calculation of AFLQ with δ = 0.75

Region Sectors j = 1 j = 2 j = 3
AFLQri,j

r = 1
i = 1 1.366 1.073 3.433
i = 2 0.485 0.564 1.962
i = 3 0.152 0.192 0.176

r = 2
i = 1 0.383 0.376 0.334
i = 2 1.442 0.799 0.667
i = 3 2.103 1.097 1.506

(b) Regional cost structure matrices

Region 1 (A1)
0.546 0.100 0.063
0.024 0.169 0.125
0.008 0.019 0.055

Region 2 (A2)
0.153 0.038 0.021
0.050 0.240 0.083
0.050 0.110 0.471

Note: figures in bold are higher than national coefficients AN =

[ 0.4 0.1 0.063
0.05 0.3 0.125
0.05 0.1 0.313

]
.

the probability of intraregional purchase. For this reason, Augmented FLQ (AFLQ)
method has been presented by Flegg and Webber (2000) as:

AFLQri,j = log2
(
1 + max

{
SLQrj ; 1

})
· FLQri,j , (9)

qri,j =
{
AFLQri,j SLQrj > 1
min

(
FLQri,j ; 1

)
SLQrj ≤ 1

. (10)

Note that, contrary to all other formulae presented throughout this section, equations
(9)-(10) do not imply that qri,j ≤ 1. In spite of the sound justification of this extension,
the applicability of AFLQ faces some constraints. First, it limits cross-hauling and
interregional trade in general, which is against the scarce empirical evidence. Table 10
demonstrates this effect with the numerical example. Second, the resulting regional
tables are not fully consistent with national tables in some respects (see Flegg and
Webber, 2000; Miller and Blair, 2009 for further discussions).
Another method RIO construction, put forward by Kronenberg (2009) and
further extended by Többen and Kronenberg (2015), is Cross-Hauling Adjusted
Regionalization Method (CHARM). It differs from the LQ approach in two major
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aspects. First, while LQ remains focused on the cost coefficients, CHARM traces
a complete and balanced regional accounting framework. Second, it is therefore
assumed that the initial dataset additionally consists of the local intermediate demand
matrix Z, constructed with some other method or known, as well as the final demand
f , value added v and output x vectors for the region of interest, which is a more
challenging data endowment than the regional activity structure alone (cf. Table 11
in Section 4). For this reason, I do not continue the numerical example as more input
assumptions would have to be made. Given the additional data, CHARM exploits
multiple regional accounting identities, as well as further assumptions, to arrive at
two further key vectors of size S: regional imports m and regional exports e, leading
to ultimate total supply and total use figures for each sector in the region. The
key assumption is that nationwide cross-hauling shares for each supply-side sector i,
defined as (ei +mi − |ei −mi|)/(xi +

∑
j zi,j + fi) extend to regional economies.

Kronenberg (2009) refers to this commodity-specific quantity (subscripted with i)
as heterogeneity, emphasizing that the cross-hauling is predominantly due to product
heterogeneity within a given sector. He argues further that heterogeneity is a property
of (commodity-side) sector, not region, and hence it can be extrapolated from the
national to sub-national levels given any sector. Court and Jackson (2015) “...disagree
with the assertion (...) that equality of national and regional heterogeneity is a
reasonable assumption”. This is because the within-sector product mix can vary
from region to region. Consider an example of the chemical industry (NACE C.20)
comprising the manufacture of fertilisers and agrochemical products (20.1+20.2), soap
and detergents (20.4) and other subsections. While the C.20 branch of national
economy may be regarded as a mix, there are sub-national regions that specialize
in producing fertilisers or soap, and those will exhibit a higher degree of cross-
hauling in C.20. Flegg et al. (2015) emphasises that the cross-hauling – heterogeneity
nexus is important, but the difficulty of obtaining satisfactory estimates of regional
heterogeneity (especially for small regions) remains a dominant obstacle in developing
further methods.
Többen and Kronenberg (2015) enumerate a number of limitations of the CHARM
approach, including i.a. better applicability to type A (or E) “technical” tables
(aggregating the use of domestic and imported indirect input of a given commodity)
rather than type B “domestic” tables (focusing on the domestic input, and shifting
the imported input of various commodities to another row). They also present a
multi-region version of the CHARM approach (see Piskin and Hannum, 2017, for a
numerical application thereof). Evidence on the empirical performance of CHARM,
as compared to e.g. FLQ, remains mixed (Flegg et al., 2015).
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4 Interregional tables: gravity-RAS and IRIOLQ
Conventional approaches to building IRIO tables, such as ones depicted in Table 1b or
Table 11 (extended to a wider accounting framework), use the preliminary input from
the RIO tables in respective positions of the intermediate demand matrix. This defines
the intraregional blocks. Conditionally upon that, the rest of the Z matrix remains
to be defined as interregional blocks. In this text, we focus on presenting IRIOLQ
method proposed by Jahn (2017), as an interesting and tractable example belonging
to a wider class of so-called gravity-RAS approaches. The gravity-RAS methods, also
referred to as doubly constrained gravity (cf. Cai, 2020, 2023), encompass three major
steps:

1. Build intraregional blocks with RIO method of choice.

2. Build interregional blocks by using gravity modelling, filling the missing
elements for r 6= p in line with an estimated gravity formula (see i.a. Leontief
and Strout 1963; Polenske 1970; Gordon 1976; Lindall et al. 2006):

ln zr,p = β0 + β1 ln dr,p + β2 lnQr + β3 lnQp + ...+ ηr,p. (11)

Note that additional regressors can be used, and that – depending on the size
of dataset for which the regression is fit – the equation can either describe total
flows between regional economies, or be sector-specific (usually by supply-side
sector).

3. Perform balancing to enforce consistency with the existing regional data or
internal consistency of the obtained results.

The major practical problem with eq. (11) obviously consists in the lack of data on
the dependent variable: if the matrix Z was observable, IRIO would not need to be
estimated. Gabela (2020) suggests three potential solutions:

1. use data for a different period;

2. use data for a different geography;

3. calibrate or adapt coefficients from the literature (e.g. in Sargento et al., 2012).

Option 3 mostly boils down to 1 and 2 in some form, and option 1 is not available for
most geographies, so the most frequent solution in practice is option 2. For example,
Jahn (2017) estimates the following equation on the set of data on trade between EU-
28 countries in 2010 (a similar specification with the same dataset is also considered
by Cai, 2023):

ln zr,p = β0 + β1 ln dr,p + β2 lnQr + β3 lnQp + β4border
r,p + ηr,p. (12)
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The parameters estimates are usually used to compute fitted values for the spatial grid
that shall be considered in IRIO construction. Those, in turn, allow one to capture
proportions between the value of deliveries to other regions. Specifically, Jahn (2017)
proceeds as follows. After using FLQ to build intraregional blocks as described in
Section (3), he looks at the implied value of total intermediate demand of sector j for
commodity i that is not used in the regions that produced this commodity, i.e. that
is traded between regions. He refers to this value as FLQ residual:

εFLQi,j = zi,j −
∑
r

zr,ri,j . (13)

Subsequently, he uses the proportions between the predicted values of Z, defined as
follows:

hr,pi,j =
{
ẑr,p r 6= p

0 r = p
; gr,pi,j =

hr,pi,j∑
i,j

hr,pi,j′

to interpolate the FLQ residual into components for each regional pair r, p (r 6= p):

zr,pi,j = gr,pi,j · ε
FLQ
i,j . (14)

In the empirical illustration, Jahn (2017) applies this approach to approximate IRIO
for the German federal states. In a later work, Jahn et al. (2020) approximate the
South Korean IRIO for 16 regions and find a decent degree of fit (though varying
depending on some specification details, including δ in eq. (8) at the first step).
Nakano and Nishimura (2013) and Yamada (2015) use their own gravity estimates to
break down the Japanese IRIO tables into a higher number of regions than presented
in Table 3. Nakano and Nishimura (2013), Cai (2023) and Torój (2024, Appendix D in
online supplemental material) present their own estimates of gravity models that differ
from specification (11), as they are fit for each supply-side sector individually. The
results from Torój (2024), provided here in Table 12, exhibit some common features
within this strand:

i) negative (highly significant) estimates of β1: spatial decay in supplies;

ii) estimates of β2 and β3 generally within the interval (0.7; 1), i.e. slightly sub-
proportional dependency on supply in the region of origin and demand in the
region of purchaser;

iii) with sector-specific estimates, stronger dependency on distance for commodities
from sections F (construction) or O-U (public, education, health services etc.),
and weaker depencency for section C (manufacturing);

iv) significant deviation from the exponential spatial decay profile for the adjacent
region pairs (both positive and negative).
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The third step of the gravity-RAS approaches, the one related to the RAS part,
presumes that individial elements of Z, defined with equations like (14), are just
an initial version of the final estimate, but need to be further modified to ensure
consistency with regional data. The most popular balancing algorithm is RAS, which
is not an acronym but has been named after the matrix notation used by Stone (1961).
It is applicable when the row and column sums of a square matrix are known, just
as well as the initial estimate of this matrix that does not necessarily fulfil these
conditions. The balancing algorithm iterates as follows:

1. Premultiply the initial version (A) with a diagonal matrix of compatible size
(R) containing ratios of desired row sums to current actual row sums located
on the diagonal.

2. Postmultiply the matrix obtained in step 1 (RA) with a diagonal matrix of
compatible size (S) containing ratios of desired column sums to current actual
column sums located on the diagonal.

3. Replace the initial version with the version obtained in steps 1-2 (RAS) and
redo steps 1-2. Iterate until convergence.

To ensure consistency with the national table, Torój (2021) introduced an additional
step, related to blockwise (rather than column or row) sums. This is to ensure that
block sums, computed over a given (i, j) block in Table 11, are equal to the respective
zi,j elements from the national table. The procedure, though considerably slower
than original RAS, is also convergent.
However, the balancing constraints are not always easily expressed as row, column
or block sums, depending on what type of national or regional data is, or is not,
available. For example, a number of authors, including Többen and Kronenberg
(2015), Jahn (2017) and Torój (2021; 2024), assume that final demand vector is known
for commodities from each region, which leads to row sum constraints. In fact, it is
unknown (at least for the EU countries at e.g. NUTS-3 level) and multiple authors
propose approximations based on value added or population. (Patryk Czechowski
demonstrated that these approximations are highly accurate, at least for the case
of Japan and South Korea, and more sophisticated approaches like regression-based
imputation do not outperform them. Results are available upon request.) Instead
of that, Jahn (2017), as well as Canning and Wang (2005) among others, perform
the final step not in the form of RAS, but in a more general setup, minimizing an
objective function of the form:

f(Z) =
∑
c

(gc(Z)−Gc)2

Gc

with respect to Z, where c indexes constraints based on the right-hand-side constraint
values Gc known from national or regional accounts data and gc(Z) is the respective

305 A. Torój
CEJEME 16: 285-322 (2024)



Andrzej Torój

left-hand side of constraint (usually sum of a subset of Z elements). Inequality
constraints are also considered, and their conventional use is to ensure that a given
column of Z does not exceed the respective global output xrj .

5 Interregional tables: Spatial IRIO
Starting with Rey (2000) and Loveridge (2004), the literature started to notice the
applicability of spatial econometric methods in IRIO estimation, within the so-called
integrated econometric–I–O frameworks. Early attempts of using these methods
included i.a. the work of Liu et al. (2015) that applied a Geographically Weighted
Regression model in exploring trade links between Chinese regions. In the recent
years, Torój (2016; 2021; 2024) developed a framework building on the multi-equation
version of the Spatial Durbin Model (SDM), labelled Spatial IRIO in the most recent
contribution. The features of this approach, including the positioning against the
previous literature, the pros and cons, will be discussed in this section.
The starting point for model specification is the commonly applied assumption of
symmetric sectorial technologies between regions. This allows one to compute the
column sums of each (i, j) block of Z matrix in Table 11 in proportion to value
added:

xri = vri
R∑
r=1

vri

· xi.

Two-dimensional table vri is available for i.a. EU countries for various levels of spatial
and sectorial aggregation and serves roughly the same role as Qri in Section 3. The
column sums are further interpolated into individual column entries using proportions
wp

i =
[
w1,p
i w2,p

i ... wR,pi

]T
, allocating between the regions of origin the

deliveries of commodity i to region p. For all r = 1, ..., R, these vertical vectors can
be collected into a single, commodity-specific matrix Wi ≡

[
w1

i w2
i ... wR

i
]

that can be found through the econometric analysis of the following set of equations
for each i = 1, ..., S:

 v1
i
...
vRi

 = Wi

 v1
1 . . . v1

S f1
i

... . . . ...
...

vR1 . . . vRS fRi



βi,1
...

βi,S
βi,f

+

 ε1
i
...
εRi

 . (15)

This equation originates from the national distribution identity for i-th commodity,
xi =

∑
j

zi,j + fi, written for the regional level with a lead matrix Wi that

accommodates both intra- and interregional trade. Torój (2016) presents an analytic
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proof that if column sums of matrices Wi sum to unity (which is a just-identifying
assumption for proportion indicators wr

i ), regional distribution equations hold and
the resulting Z matrix in the IRIO model yields identical simulation results as the
national-level I–O model. Technically, equation (15) can be regarded as a specification
that reads as SDM since vi is both a dependent variable and one of the regressors in
a spatially lagged form, as long as Wi is interpreted as a spatial weight matrix. The
fundamental difference is that the coefficient vector β is known (from national I–O
ratios), and Wi – estimated. As matrices of size R×R obviously cannot be estimated
freely in S versions, each entry wr,pi is parametrically formulated as a function of
properties of the pair (r, p), just as in eq. (11). The initial version of Z is subject to
balancing as described in Section 4.
The Spatial IRIO approach exhibits three major advantages:

1. Flexibility with small regions. Although multiple functional forms linking
distance dr,p and Wi entries can be considered, the previous applications
demonstrated that the following, based on the cumulated distribution function PΓ,
accommodates a number of useful cases with only two commodity-specific parameters:
shape and scale. First, local suppliers can be strongly preferred (case 1 in Fig. 3a).
Second, the supply intensity can decrease mildly with distance (case 2 in Fig. 3a).
Third, a threshold of tolerance to distance exists (case 3 in Fig. 3a). While cases 1 and
2 can easily be modelled with a single decay parameter as in gravity models like (11),
case 3 and many further ones cannot. When relatively large regions are considered,
the specification (12) with an additional binary variable indicating adjacent region
pairs is a reasonable solution. This is not any more the case when the regions are
small enough because the threshold distance considered in case 3 can substantially
exceed a typical perimeter of a region’s circumcircle.
The posterior means for the shape and scale parameters in the sector-specific
spatial decay profiles suggest that agricultural commodities and advanced services
are supplied to the most distant locations, while the simple services and construction
activities – to the least distant ones, on average. These results are roughly comparable
to sector-specific gravity estimates from Table 12.
The related literature provides a few similar studies, both with the Spatial
IRIO framework (Mogiła et al., 2024) and non-spatial gravity models (Nakano
and Nishimura, 2013; Cai, 2023). Although the sectoral breakdowns vary,
nonmanufacturing industries (mining, construction) generally tend to exhibit a
relatively local profile both in Mogiła et al. (2024) and in Cai (second-highest
distance elasticity estimate of 1.69 in absolute terms). For a more detailed commodity
breakdown, Nakano and Nishimura find below-unity elasticities for a number of non-
manufacturing industry subsections. All three studies conclude that services are
supplied to higher distances, on average. The second-lowest Cai’s distance elasticity
is for “other services” (excluding trade, hospitality, transport and communications),
whereas Nakano and Nishimura’s profile for some advanced services prefers high over
low distance with an inversely signed estimate. This last possibility is precluded by
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Spatial IRIO.

2. Using data for the spatial area and granularity of interest. Estimating
gravity models with a different geography than a geography of interst for IRIO
building, and recycling their parameters for IRIO construction as suggested in Section
4, poses a risk of mismatch between the specific properties of both economies, but also
between spatial granularities. It is customary to use estimates obtained with greater,
more data-abundant regional grids (i.e. countries) for sub-national regions, but also
survey-based IRIO data for greater countries and regions to build IRIO estimates
for smaller ones. In a benchmarking exercise with the use of South Korean data (cf.
Table 3), Torój (2024) compares the elements of Z matrix estimated with (i) Spatial
IRIO method (using Korean spatio-sectoral distribution of value added), (ii) IRIOLQ
method with limited information. In the latter experiment, IRIOLQ does not use
real-world Korean data on Z for estimating gravity equation, but replaces it with
data for other geographies: Japan and OECD ICIO (EU-27 or entire set; cf. Table
2). In this setup, the original survey-based data is only used for the ex post accuracy
assessment. This comparison replicates the choice that researchers usually face when
generating IRIO for a new spatial grid, with typical limited regional data endowment.
The RMSE under IRIOLQ turned out to be greater by 4.9-9.1%, consistently across
various specifications. A potential reason for this can be the usage of Korean (rather
than Japanese or multicountry) regional and national data for estimation.
However, in an environment of scarce data, the idea of combining information from
various data sources shall not be rejected on the basis of this limited evidence. In a
version of Spatial IRIO presented by Torój (2024), this possibility is accommodated
through the use of Bayesian methods. The posterior distributions of shape and scale
parameters that constitute the elements of Wi in eq. (15) are a synthesis of (i)
information extracted from the data on v and f for the respective country and regional
granularity (Poland, NUTS-3), (ii) the prior distribution that has been derived with
the data for NUTS-3 regions in Finland (see Section 2). In particular, the survey-based
set of Finnish RIO tables implies the prior expected values of scale, conditionally on
shape, so as to match the fraction of intermediate supply of commodity i delivered
to the home region. One can imagine similar prior elicitation based on the Japanese,
Korean or any other existing dataset.

3. Local and cross-regional cost coefficients determined in a joint procedure
(with endogenous cross-hauling). Note that the intraregional cost coefficients
arise naturally from the estimates of shape and scale (as well as the balancing
procedure), along with the interregional ones. This is contrary to the IRIOLQ
procedure from Section 4, in which the RIO tables for individual values, determined
with the FLQ method conditionally some choice of δ, imply FLQ residuals (eq.
(13)) as sums of interregional blocks. Note that, in such sequential procedures, the
interregional multipliers are independent on the gravity modelling and the degree of
cross-hauling is largely determined by δ calibration at step 1. In the Spatial IRIO
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procedure, cross-hauling arises and its intensity is endogenous; in particular it is not
related to the value of any calibration.
Boero et al. (2018) noted that the methods for the regionalization of IO tables and
the ones for estimating trade flows are independent and separated, with the possibility
to obtain inconsistent estimates. At the same time, Cai (2020, p. 91) emphasizes
that there is nothing about intra-regional trade that would warrant special treatment.
Consistently with this line of argument, Spatial IRIO determines both types of
coefficents jointly, and in doing so it is similar to the procedure proposed by Gabela
(2020) under the name extended approach (although these authors themselves assess
the application of this approach as quite unsatisfactory in practice).
The use of Bayesian methods for estimating shapes and scales offers a convenient
possibility of drawing from the posterior distribution to obtain multiple versions of Z
and hence different values of local I–O multipliers. This, in turn, allows to quantify
the statistical uncertainty around various quantities relevant in regional studies. One
of them is the share of indirect effects in the domestic region in total indirect effects
for a specific I–O simulation. In a numerical example considered by Torój (2024),
this share amounts to 86.9% at point estimates, and the 90-percent highest posterior
density interval ranges from 81.8% to 89.7%. Similar statements can be made with
regard to individual Z or A entries, multipliers, etc.
As any approach, Spatial IRIO faces some limitations. Firstly, it is more analytically
complicated than the previously proposed methods (although replication codes
are available online, https://github.com/AndrzejToroj/SpatialIRIO; see Torój,
2024). Secondly, eq. (15) involves fi (distribution of final demand for each commodity
i between regions of origin) as an observable variable, while in fact it is only
approximated. Even if the quality of approximation is high, as available sources might
suggest, this is another source of uncertainty, unaccounted for by the model. Third,
the benchmarking study by Torój (2024) suggests that a relatively good performance
of this method is predominantly due to (much) higher fit of intraregional blocks,
whereas the interregional blocks are (somewhat) less accurately replicated than with
IRIOLQ in different variations.
Like many methodological approaches, Spatial IRIO builds on the assumption that
regional technologies are symmetric (i.e. cost coefficients of a given branch do not vary
between regions for a given activity sector). On the one hand, there is some empirical
evidence that this assumption is decently (though not perfectly) valid (Torój, 2021).
On the other hand, if the regions under consideration are small enough to be labelled
as metropolitan or peripheral, which is the case for Polish NUTS-3 regions, then the
arguments from New Economic Geography can be used to argue against symmetric
technologies, as in the case of AFLQ presented in Section 3. Starting with the
core-periphery model of Krugman (1991), a number of contributions justify how
agglomeration effects reinforce regional productivity differences which are potentially
impactful for regional technological input-output coefficients (see i.a. Fujita et al.,
1999; Miller and Blair, 2009; Bartelme and Gorodnichenko, 2015). This results from

311 A. Torój
CEJEME 16: 285-322 (2024)

https://github.com/AndrzejToroj/SpatialIRIO


Andrzej Torój

knowledge spillovers, labor market pooling and skill accumulation, lower transaction
and transport costs and a number of externality types occuring in the metropolitan
areas, shaping both cost levels and structures of the existing firms and encouraging
new firms to co-locate if they have potential upstream or downstream connections,
Fourthly, as noted by Mogiła et al. (2024), when the number of regions is low, shape
and scale are not well identified as individual parameters. One can imagine this as
the lines in Figure 3a being fitted to a lower number of data points. This has no
direct impact on the estimate of Z in IRIO tables. However, different combinations
of shape and scale can yield a similar data fit and hence the MCMC simulation fails
to converge. An additional inspection of such cases by the researcher is required.
Usually, when the simulated MCMC chains of shape and scale for a given commodity
are correlated with Pearson coefficient close to −1, one can assume that the desired
distance profile has been found even if the potential scale reduction factor fails to
converge to one. This is inconvenient, however, as it requires additional discretion
from the researcher and may have a detrimental impact on interval assessment of the
kind discussed in point 3 above.

6 Empirical performance of RIO and IRIO
methods: evidence from South Korea

The scarce cases of survey-based tables, enumerated in Table 3, shed some light on
the empirical performance of RIO and IRIO construction methods. To illustrate the
discussion in Sections 3-5, I attempt to reconstruct the intermediate demand matrix
Z from the South Korean IRIO tables. I consider three regions: Sejong (a municipal
province located in country interior), Jeollabuk-do (a relatively large province in the
East) and Busan (a maritime logistics megahub in the West of the country) – see
Figure 4. For each of these, I consider RIO table estimates obtained with SLQ, CILQ
or FLQ, as well as intraregional partition of IRIO obtained with IRIOLQ and Spatial
IRIO methods. The results are summarized in Table 13.
In line with most of the empirical literature, FLQ exhibits the highest degree of
accuracy in the class of RIO methods. Although FLQ is the first step in the IRIOLQ
procedure and fully determines the initial version of Z, the subsequent balancing step
makes the RMSE for both A and Z under FLQ deviate from the analogous values
for intraregional blocks under IRIOLQ, with a slight drop in accuracy. Spatial IRIO
outperforms IRIOLQ in accuracy for some provinces (Jeollabuk-do, Sejong), while it
underperforms in others (Busan). It can be concluded that the generally promising
properties of Spatial IRIO, discovered so far for a cross-section of Korean regions,
cover some degree of heterogeneity that requires further research.
These results are extended with an illustrative I–O simulation. A representative
enterprise from the ’Machinery and Equipment’ industry is considered, with a total
production value of 200m won and a sectorial cost structure matching the branch.
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Table 13: Performance of RIO and IRIO construction methods for selected South
Korea provinces

(a) Sejong

Method ME (A) RMSE (A) ME (Z) RMSE (Z) indirect
home
reg.
(dX)

indirect
other
reg.
(dX)

Stat. KO (RIO) – – – – 128.8658 –
SLQ 0.0055 0.0181 3.4383 16.9795 162.3481 –
CILQ 0.0063 0.0199 3.3820 15.7498 180.5257 –
FLQ 0.0022 0.0159 1.1413 10.7446 151.8649 –
Stat. KO (IRIO) – – – – 129.0908 99.3200
IRIOLQ 0.0019 0.0360 0.6519 14.9713 142.2828 135.7459
SpatialIRIO 0.0008 0.0123 0.7459 13.9312 134.8641 91.2483

(b) Jeollabuk-do

Method ME (A) RMSE (A) ME (Z) RMSE (Z) indirect
home
reg.
(dX)

indirect
other
reg.
(dX)

Stat. KO (RIO) – – – – 143.2297 –
SLQ 0.0049 0.0159 12.1851 81.1959 188.8277 –
CILQ 0.0044 0.0159 10.1281 82.1895 192.8414 –
FLQ 0.0001 0.0149 -2.9414 89.6928 155.5470 –
Stat. KO (IRIO) – – – – 144.0464 84.3990
IRIOLQ 0.0006 0.0242 -1.0916 108.9345 157.2591 95.3329
SpatialIRIO 0.0044 0.0195 10.4878 85.6058 182.2438 47.3087

(c) Busan

Method ME (A) RMSE (A) ME (Z) RMSE (Z) indirect
home
reg.
(dX)

indirect
other
reg.
(dX)

Stat. KO (RIO) – – – – 149.7326 –
SLQ 0.0043 0.0136 22.8836 81.5593 197.9233 –
CILQ 0.0043 0.0142 21.5576 82.8990 191.3172 –
FLQ 0.0006 0.0120 0.7335 75.9180 157.8265 –
Stat. KO (IRIO) – – – – 151.1832 74.3972
IRIOLQ 0.0007 0.0202 1.2744 92.9558 199.6407 144.4143
SpatialIRIO 0.0043 0.0164 22.7974 96.8304 195.4857 33.2813

Note: ME = Mean Error. RMSE = Root of Mean Square Error. A = cost coefficient matrix (as in text).
Z = intermediate demand matrix [bn won] (as in text).
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All purchases are assumed to be made in the home province. Table 13 presents total
indirect effects related to the purchases made by this enterprise, in terms of global
output. In the case of RIO approaches, the results refer to the home region (second
last column). For IRIO approaches, the results are broken down into home province
and the sum of other South Korean provinces (two last columns).
For all regions under consideration, SLQ- and CILQ-based RIO tables yield the
highest indirect effects for the home region within the class of single region approaches.
Under FLQ, the indirect effects for the home region are considerably and consistently
smaller, although they still deviate on the upside from the amount that can be
simulated with the original table. When the original IRIO tables are used, and the
cross-regional feedback effects materialize, the indirect effects for the home region
are just marginally higher. However, the indirect effects for the other regions can be
traced in this case, and their sum turns out to be generally smaller than for the home
region, both when the original table is considered, as well as its approximations.
The simulation results obtained with the original table are matched to a varying
extent by both IRIO construction approaches, depending on the province. For Sejong,
effects computed with Spatial IRIO are reasonably close, and clearly outperform
IRIOLQ which overshoots the original result. The opposite is the case for Jeollabuk-
do, where Spatial IRIO overestimates the indirect effect for the home province and
underestimates it for the other regions. In the case of Busan, both methods perform
just as badly, overscoring the indirect effects in the home region. At the same
time, IRIOLQ overestimates the effects for other regions, while the Spatial IRIO
underestimates them, both with considerable errors.

7 Conclusions
Regional input–output (RIO) tables and their interregional extensions (IRIO) for sub-
national granularities remain a useful tool for regional policy analysis. A number of
regional development questions – starting with the impact of a greenfield investment
on a local economy, up to the socio-economic impact of an existing company on the
local community – can be answered with input–output (I–O) simulations powered by
these tables. At the same time, the instances of such tables based on direct empirical,
survey-based evidence remain limited, predominantly due to a prohibitively high cost
of compilation. The rare exceptions include the datasets derived from the Commodity
Flow Survey in the United States, and infrequent estimates for a grid of 9-18 regions
in i.a. Finland, Japan or South Korea.
It is therefore not surprising that the demand for estimation methods of RIO and IRIO
tables persists and new proposals are formulated in the literature. In this article, I
review a few most popular methods, including also some most recent developments,
and discuss their advantages and disadvantages. To this aim, I use a consistent
notation embedded within an interregional accounting framework, as well as simple
numerical examples and empirical results from the literature.
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Figure 4: Simulation results with RIO and IRIO tables: indirect effects on global
output of an illustrative ’Machinery and Equipment’ company located in selected
South Korean regions
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The workhorse approaches for RIO construction belong to the Location Quotient
family. Simple Location Quotients (SLQ) preclude cross-hauling (simultaneous
imports and exports of the same commodity) and assume that the local demand shall
be fully satisfied with local supply, as long as the latter is sufficient, which results
in a tendency to overestimate the local cost share and local multipliers. The issue
is not fully solved by Cross-Industry Location Quotients (CILQ) or closely related
Round’s Location Quotients (RLQ), although they generate some cross-hauling.
The dominant approach, Flegg’s Location Quotient (FLQ), substantially increases
the value of interregional trade and cross-hauling by using a calibrated convexity
parameter. Augmented FLQ (AFLQ) additionally allows the local cost coefficient to
grow above the national one due to local clustering, but this generally leads to a lower
degree of fit. A different approach, Cross-Hauling Adjusted Regionalization Method
(CHARM), keeps track of a wider regional accounting perspective and applies the
national cross-hauling intensities to regions.
A combination of demand, supply and distance considerations is taken into account
when building interregional I–O (IRIO) tables. The widespread family of gravity-RAS
approaches either uses RIO tables as intraregional blocks and proceeds to apply some
gravity model to consistently build interregional blocks (as e.g. IRIOLQ combines
FLQ with gravity modelling), or determines both in a joint procedure. A relatively
recent, promising development in the latter group builds on spatial econometric
analysis involving regional activity data and national cost structures (Spatial IRIO).
The extant evidence, though scarce, demonstrates that it can be regarded as a
promising approach in small-area studies.
The age of big data will likely modify this landscape. An increase in the use of direct
observations can be expected, but with sensors and GPS devices rather than surveys.
Early attempts in the literature involved refining the measures of distance for gravity
or spatial modelling, e.g. by using journey time between regional capitals rather than
physical distance (Jahn et al., 2020; Torój, 2024), with only marginal effect on the
final results. Data from mobile devices has been used to differentiate between regions
where households earn and spend their income due to commuting (Torój, 2024). On
the other hand, the big repositories of tax data created for tax enforcement purposes
(such as Standard Audit File for Tax) can be used to extract locations of both selling
and purchasing side, and potentially merged with sectors of both. This, in turn, might
provide an imprecise spatial perspective, since invoice data might not coincide with
the actual production site. The real breakthrough would come with the possibility to
merge GPS-based shipment data with commodity or activity codes.
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